Mechanism investigation of ketone hydrogenation catalyzed by ruthenium bifunctional catalysts: insights from a DFT study.

نویسندگان

  • Xin Zhang
  • Xiaojia Guo
  • Yue Chen
  • Yanhui Tang
  • Ming Lei
  • Weihai Fang
چکیده

In this paper, the mechanism of ketone hydrogenation catalyzed by five Ru bifunctional catalysts with different structural frameworks was studied in detail using density functional theory (DFT). This mechanism contains hydrogen transfer, dehydrogenation of alcohol, and dihydrogen activation fundamental reactions. The involvement of alcohol is also discussed and found with different activities in hydrogen transfer, dehydrogenation and dihydrogen activation steps in five systems. Our calculated results indicate that the weak Ru-H bond, stronger basicity of hydride and stronger X-H acidity will decrease the barrier of the HT step, and that the polar micro-environment of dihydrogen coordinating with Ru catalysts and short hydrogen transfer distance would be able to facilitate the heterolytic splitting of dihydrogen in the dihydrogen activation step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation.

A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rat...

متن کامل

Highly active iridium catalysts for the hydrogenation of ketones and aldehydes.

The pressure hydrogenation capabilities of the iridium pincer complexes IrH2Cl[((i)Pr2PC2H4)2NH] (1) and IrH3[((i)Pr2PC2H4)2NH] (2) are described and compared to related results obtained previously in transfer hydrogenation. Complex 1 was shown to act as a convenient air-stable entry point to the active catalyst 2, in the presence of base and hydrogen gas. The catalysts are active in a range of...

متن کامل

Kinetic and structural studies on 'tethered' Ru(II) arene ketone reduction catalysts.

A series of kinetic and structural investigations on ruthenium-based catalysts for asymmetric transfer hydrogenation (ATH) of ketones are reported. A method is reported for monitoring the formation of ruthenium hydride species in real time using (1)H NMR spectroscopy.

متن کامل

trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.

New insights into the structural, electronic and catalytic properties of Fe complexes are provided by a density functional theory study of model as well as real [Fe(II)(H)(2)(diphosphine)(diamine)] systems. Calculations conducted using several different functionals on the trans- and cis-isomers of [Fe(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes show that, as with the [Ru(II)(H)(2)(diphosphine)(d...

متن کامل

Formation of Ruthenium Carbenes by gem‐Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans‐Hydrogenation

Insights into the mechanism of the unusual trans-hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para-hydrogen (p-H2 ) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans-reduction competes with a pathway in which both H atoms of H2 are delivered to a single alkyne C atom of the substrate while the second alkyne C atom is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 17  شماره 

صفحات  -

تاریخ انتشار 2012